Nanoindentation

Kathy Walsh, Ph.D.

Frederick Seitz Materials Research Laboratory
University of Illinois at Urbana-Champaign
Mechanical Testing:
How does it respond when you poke it, squish it, or stretch it?
Choose the Right Technique for Your Sample

• Sensitive enough to measure the sample
 – Appropriate force resolution

• Spatial resolution on an interesting scale
 – Lateral resolution: 10s-100s of nm, 10s of μm, mm
 – Displacement: nm, μm, mm

nanoindentation
Small-scale Mechanical Testing

- **Nanoscale**
 - AFM
 - Nanoindenter

- **Microscale**
 - Nanoindenter
 - Microindenter

- **Milliscale**
 - Rheometer (twisting)
 - DMA (stretching, compressing)
Why Measure Nano- or Micromechanical Properties?

• Mechanical properties help define materials
 – Optimize applications
 – Flexibility, biomechanical compatibility
 – Crack formation, wear resistance, delamination
Why Measure Nano- or Micromechanical Properties?

• Mechanical properties help define materials
 – **Nanoindentation**
 – Forces: μN to mN, compatibility
 – Distances: nm to μm, distance, delamination

• Samples may be inherently small
 – Thin films, MEMS devices, nanopillars

• Local composition variations in samples
 – Spatially-resolved mechanical testing
What Mechanical Properties Do People Measure?

• **Quasistatic**
 - Elastic modulus (related to stiffness)
 - Hardness

• **Dynamic**
 - Time-dependent (viscoelastic) properties
 - Storage modulus, loss modulus, tan delta
What Mechanical Properties Do People Measure?

- **Quasistatic**
 - Stress vs. strain curves
 - Load (force) vs. displacement curves

- **Dynamic**
 - Properties as a function of time or frequency
 - Creep or stress relaxation
How do People Measure Mechanical Properties?

• Quasistatic
 – AFM force curves
 – Nanoindentation, microindentation
 – Stress vs. strain curves

• Dynamic
 – AFM dynamic measurements
 – nanoDMA, Modulus Mapping
 – Dynamic Mechanical Analysis
How do People Measure Mechanical Properties?

• Quasistatic
 – AFM force curves
 – Nanoindentation, microindentation
 – Stress vs. strain curves

• Dynamic
 – AFM dynamic measurements
 – nanoDMA, Modulus Mapping
 – Dynamic Mechanical Analysis

Remember yesterday’s talks from Scott MacLaren (AFM and force curves) and Marta Kocun (AM-FM)

More detailed talk by Marta Kocun on AM-FM tomorrow at 9am in room 280 MRL
How do People Measure Mechanical Properties?

• Quasistatic
 – AFM force curves
 – Nanoindentation, microindentation
 – Stress vs. strain curves

But this talk is about nanoindentation, more local measurements
 – nanoDMA, Modulus Mapping
 – Dynamic Mechanical Analysis

© 2016 University of Illinois Board of Trustees. All rights reserved.
How do People Measure Mechanical Properties?

• Quasistatic
 – AFM force curves
 – Nanoindentation, microindentation
 – Stress vs. strain curves

• Dynamic
 – AFM dynamic measurements
 – nanoDMA, Modulus Mapping
 – Dynamic Mechanical Analysis
(Instrumented) microindentation is sometimes more useful
- Indents to greater depths
- Cares less about
 - Surface roughness
 - Surface forces (adhesion)
Instrumented Indentation

- Different names, same technique
 - Nanoindentation
 - Indentation depths shallower than a few µm
 - Microindentation if deeper (some instruments)
 - Instrumented Indentation
 - Depth-Sensing Indentation

Poke a sample and record its response
Nanoindenter Basic Parts

Nanopositioning

Transducer

Tip

Stiff frame

Sample

© 2016 University of Illinois Board of Trustees. All rights reserved.
Why Does the Instrument Frame Stiffness Matter?

Instrument is stiff so sample deforms instead

Stiff frame

Tip

Sample

Sample is the most compliant part

Measure Sample Not Apparatus

© 2016 University of Illinois Board of Trustees. All rights reserved.
It’s Basically About the Tip and Sample

Nanopositioning

Transducer

Tip

Stiff frame

Sample
Nanoindentation Tips

• Tips are made of diamond or sapphire
 – Tip characteristics are well-known
 – Tip compliance is negligible
• Variety of shapes for different applications
 – Induce different deformation mechanisms
 – Berkovich, Vickers, cube corner (pyramids)
 – Flat punch, conospherical (bending, soft materials)
Nanoindenter Tips

• Nanoindentation
 – Up to a few µm deep
 – Up to several mN

• Most popular tip shape for nanoindentation:
 – Berkovich 3-sided pyramid

Nanoindentation residual imprint
Berkovich tip on aluminum foil

atomic force microscopy image
Microindenter Tips

• Microindentation
 – Many μm deep
 – Up to several N

• Most popular tip shape for microindentation:
 – Vickers 4-sided pyramid
 – Soft materials: sphere

Microindentation residual imprints
Vickers tip on steel

bright field and dark field optical microscopy images
Contact Area Between Tip and Sample

- Crucial for getting the correct answers
- To ensure well-defined contact area between tip and sample...
- make your sample as smooth as possible
 - Polishing
 - But beware of surface damage, work hardening

© 2016 University of Illinois Board of Trustees. All rights reserved.
Contact Area

• Contact area between tip and sample
 – Very, very important (crucial calibration)
 – How much of your tip is applying force on how much of your sample?
 – Depends on depth indented into sample
 – Depends on roughness
Contact Area

- Contact area between tip and sample
 - Very, very important (crucial calibration)
 - How much of your tip is applying force on how much of your sample?
 - Depends on depth indented into sample
 - Depends on roughness

Berkovich indent on aluminum foil (AFM image)
The 5% Rule

- Contact area between tip and sample
- Sample roughness should be $\leq 5\%$ of indent depth...
- ... *indent 20x deeper than surface roughness*
- Can get tricky for thin samples because of the 10% rule

This indent is not deep enough for good results (especially for hardness)

Nanoindenters indent a few microns deep, so try to keep sample roughness < 100nm (microindenter samples can be rougher)
The 10% Rule

- The substrate effect
- *Indent depth should be ≤ 10% of sample thickness*
- If indent too deep, start measuring substrate properties

thin films require care, so it’s easiest to study films ≥ 1µm thick

feels like foam

feels stiffer

© 2016 University of Illinois Board of Trustees. All rights reserved.
The 10% Rule

- The substrate effect
- *Indent depth should be $\leq 10\%$ of sample thickness*
- If indent too deep, start measuring substrate properties

indent here

feels like foam

feels stiffer

sample

substrate

5% + 10% rules: thin samples can’t be rough

© 2016 University of Illinois Board of Trustees. All rights reserved.
The 5% and 10% Rules

• 5% rule and 10% rule are just rules of thumb... the actual values are sample-dependent
 – Compliant sample on stiff substrate: can probably go deeper than 10%
 – Stiff sample on compliant substrate: probably see substrate effect at depths shallower than 10%
Performing an Indent

This is actually a non-instrumented microhardness tester.
Performing an Indent

this is when an instrumented indentation would happen

© 2016 University of Illinois Board of Trustees. All rights reserved.
Performing an Indent

This is actually a non-instrumented microhardness tester.
Example Nanoindentation Data (Quartz)

“Load—displacement curve”
Example Nanoindentation Data (Quartz)

“Load—displacement curve”

Load P (few μN to few mN)

Displacement h (few tens of nm to few μm)

© 2016 University of Illinois Board of Trustees. All rights reserved.
Example Nanoindentation Data (Quartz)

“Load—displacement curve”

- Loading curve
- Unloading curve

(optional) hold segment to measure creep
Example Nanoindentation Data (Quartz)

“Load—displacement curve”

unloading curve fit for analysis
Getting “the Answer”

Reduced modulus

\[E_{\text{reduced}} \propto \frac{S}{\sqrt{A}} \]

Hardness

\[H = \frac{P_{\text{max}}}{A} \]

(Actually, \(E_{\text{reduced}} = \frac{1}{\beta} \frac{S}{2 \sqrt{A(h_c)}} \), but just look up “fundamental equation of nanoindentation.”)
Why Does Contact Area Matter, Again?

Reduced modulus

\[E_{\text{reduced}} \propto \frac{S}{\sqrt{A}} \]

Hardness

\[H = \frac{P_{\text{max}}}{A} \]

Contact area: projected area of tip in contact with sample at a given depth
Elastic from Reduced Modulus

Elastic (Young’s) modulus

\[E_{sample} = \frac{1 - \nu^2_{sample}}{E_{reduced}} \frac{1 - \nu^2_{tip}}{E_{tip}} \]

- Poisson’s ratio of the sample
- Already known (diamond tips)
- Measure using nanoindentation
- Many people just quote this value

© 2016 University of Illinois Board of Trustees. All rights reserved.
• Many materials are somewhat viscoelastic
 – Time-dependent mechanical behavior
• Creep or stress relaxation
 – Hold a constant load or displacement for a long time
 – Beware of drift
• Dynamic testing
Nanomechanical Properties as a Function of Depth

properties can differ with depth
Nanomechanical Properties as a Function of Depth

- 5% rule
- Surface effects and calibrations matter more for shallower indents
- Hardness and (reduced) modulus
- Indentation depth (tens of nm to few µm typical)

© 2016 University of Illinois Board of Trustees. All rights reserved.
Nanomechanical Properties as a Function of Depth

- Hardness
- (Reduced) modulus

Indentation depth (tens of nm to few µm typical)

May start to measure substrate properties

10% rule

Indent here

Sample

Substrate

© 2016 University of Illinois Board of Trustees. All rights reserved.
Nanoindentation gives nanomechanical properties as a function of depth and location.

These indents were done at different places on the sample as well as at different depths.

- Hardness
- Reduced modulus
Nanoindenters are usually designed for the “engineering materials” community
- Metals, composites, non-porous materials

Using a traditional nanoindenter to study soft, compliant, porous, or sticky materials
- Usually doesn’t go deep enough
- Usually doesn’t have awesome enough force resolution

comfortable modulus range: ~MPa to many GPa
(try cantilever-based techniques for more compliant samples)
Nanoindenters are usually made for the “engineering materials” community

- Cantilever-based techniques:
 - AFM (force curves and so forth)
 - Cantilever-based nanoindenters

comfortable modulus range: ~MPa to many GPa
(try cantilever-based techniques for more compliant samples)
• Fixative changes mechanical properties!
 – Fixative makes things stiffer
 – If that’s the only way you can study your sample...
 • Do a comparative study (no absolute numbers)
 • Make control samples with just the fixative

• May need a heating cell/stage to stay at biorelevant temperatures

• May need to work in fluid
Keeping the “Hydro” in Hydrogel

• Keep wet samples wet...
 – Drying and rewetting can change properties
 – Samples may dry out during measurements

• ... and the instrument dry
 – Don’t get fluid (or vapors) into the instrument
 – Petri dishes, special tips
Sample Preparation

• Know what your surface looks like first
 – Look at it under an optical microscope
 – Check sample roughness

• Mounting the sample
 – Can’t measure mechanical properties of something that’s floating
 – Compliant glue affects results

Measure Sample Not Apparatus
Many Options for Sample Mounting

- **Glue (usually superglue)**
 - Thin layer
 - Porous samples may get partially filled with glue
- **Vacuum chuck**
- **Clamp or wrap samples**
 - Don’t stress the area you want to measure
- **Cast gels directly onto substrate**
 - Glass slide (frosted is great), Petri dish
1. Approach surface
2. Drift correction
3. Indent
4. Withdraw
5. Analyze data

The trickiest part
How to Approach Your Data

- Oliver—Pharr model
 - Elastoplastic materials

Note that contact area may change due to material behavior and contact area is important.

\[E_{reduced} \propto \frac{S}{\sqrt{A}}, \quad H = \frac{P_{max}}{A} \]

pile-up

sink-in
How to Approach Your Data

- Oliver—Pharr model
 - Elastoplastic materials
- But your samples may be...
 - Sticky, compliant
 - Poroelastic
 - Viscoelastic
 - Poroviscoelastic
 - Thin films

© 2016 University of Illinois Board of Trustees. All rights reserved.
How to Approach Your Data

• Oliver—Pharr model
 – Elastoplastic materials
• But your samples may be...
 – Sticky, compliant
 – Poroelastic
 – Viscoelastic
 – Poroviscoelastic
 – Thin films

© 2016 University of Illinois Board of Trustees. All rights reserved.
How to Approach Your Data

- Oliver—Pharr model
 - Elastoplastic materials
- But your samples may be...
 - Sticky, compliant
 - Poroelastic
 - Viscoelastic
 - Poroviscoelastic
 - Thin films

© 2016 University of Illinois Board of Trustees. All rights reserved.
How to Approach Your Data

• Oliver—Pharr model
 – Elastoplastic materials

• But your samples may be...
 – Sticky, compliant
 – Poroelastic
 – Viscoelastic
 – Poroviscoelastic
 – Thin films \(\text{sharp tips, continuous stiffness measurements}\)
Nano/micromechanical Testing Facilities at MRL

Nanoindentation and Friends (nano/microscale)

Leitz Wetzlar Miniload II Microhardness Tester

Hysitron TI-950 TriboIndenter transducers: standard, nanoDMA, high load (2.8N), AE, nanoECR

Optics11 Piuma Soft Material Nanoindenter

Coming later this summer

Image courtesy Optics11

TA Instruments Q800 DMA clamps: dual cantilever, tension

Asylum MFP-3D-SA (x2) 15µm z range 90µm x 90µm scan size

Asylum Cypher 5µm z range 30µm x 30µm scan size

DMA (milliscale)

AFM (nanoscale)

© 2016 University of Illinois Board of Trustees. All rights reserved.
Useful Books about Nanoindentation

- **Nanoindentation (3rd ed., 2011)**
 - Anthony C. Fischer-Cripps
 - Classic text on nanoindentation

- **Handbook of Nanoindentation with Biological Applications**
 - Michelle L. Oyen
 - Soft materials people: read this one

- Both books are available for free online through the U of I library

© 2016 University of Illinois Board of Trustees. All rights reserved.
Thanks to our sponsors!